AN NIP-LIKE NOTION IN ABSTRACT ELEMENTARY
CLASSES

WENTAO YANG

ABSTRACT. This paper is a contribution to “neo-stability” type of result for
abstract elementary classes. Under certain set theoretic assumptions, we propose
a definition and a characterization of NIP in AECs. The class of AECs with
NIP properly contains the class of stable AECs E We show that for an AEC K
and A > LS(K), K, is NIP if and only if there is a notion of nonforking on it
which we call a w*-good frame. On the other hand, the negation of NIP leads
to being able to encode subsets.
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1. INTRODUCTION

There is a massive body of literature on “neostability” for first order theories
dedicated to exploration and study of forking-like relations for various classes of
unstable theories. The main classes: NIP theories, simple theories, theories with
the strict order property, theories with the tree property of type 1 and 2, were
all presented by Shelah in [She78|. In mid 1976 Shelah set the program which he
named classification theory for non-elementary classes. A few years later
the focus shifted to abstract elementary classes (AECs).
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1See Examples and for AECs that are unstable, not elementary but NIP.
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An appropriate generalization of stability for AECs was introduced in [She99|
building on many previous papers including [She71b] and [GS|. In the last forty
years starting with [GS86] much was discovered about analogues of superstability.
See [Vas16b], [GV17], and [Leu23| for some recent work.

In this paper we propose progress towards “neostability of AECs”, more precisely,
exploring an analogue of NIP and its negation. We propose a definition (under
a certain cardinal arithmetic axiom) of NIP. Using techniques from papers by
Shelah [She09a], Jarden and Shelah [JS13] and Mazari-Armida [MA20], we obtain
a characterization of NIP in AECs using frames (a forking-like relation).

The notion of the A-stable AEC was first studied in [She99|] using non-splitting.
Various frameworks of forking-like relations were introduced. In [She09a|, Shelah
introduced the local notion of the good A-frame, an axiomatization of forking-like
relations for structures of cardinality A in AECs, as a parallel of superstability.
In [BG17] Boney and Grossberg established that for “nice” AECs, stablity implies
existence of strong independence relations on the subclass of saturated models,
which allows types of arbitrary length. In [BGKV16] it was shown that this relation
and several others are unique/canonical (if they exist).

Although good A-frames are nice and powerful, sometimes they might not exist.
There are several weaker notions, where some of the axioms of a good A-frame are
weakened or dropped. Vasey worked with good™ A-frames in [Vas16b] and good
A-frames in [Vasl6al. Jarden and Shelah defined semi-good A-frames in [JS13].
Mazari-Armida introduced w-good A-frames in [MA20], which is weaker than all
the axiomatic frames mentioned above.

Definition 1.1. Let K be an AEC, A > LS(K). K has NIP if for all M € K,
[9S(M)| < ded A.

Our definition of NIP will be discussed further in the next section.

Our main results are:

Theorem 1.2 (2*" > 2"). Let K be an AEC with A > LS(K) with A-AP, \-JEP
and A-NMM, and 1 < I(A",K) < 2*". K, has NIP if and only if there is a
w*-good A-frame on K except possibly without (Continuity ™). Moreover,

(1) (ded A = AT < 2%) If 65, satisfies in addition (Continuity), then the w*-
good frame satisfies in addition that if p € S**(M), then there is N > M
and ¢ € S*(N) extending p that does not fork over N. In particular, for
any N’ >k N there is ¢ € gS(N') extending ¢ that does not fork over N.

(2) if K is (< AT, \)-local, then the frame has (Continuity ™).

Theorem 1.3. Suppose K is (< Wy)-tame, M € K, C C |M|, X := ||C] >
J5(LS(K)) and (ded X)2“°"™ = ded A. Suppose |¢S*(C; M)| > ded A. Then there
is N € K, (a, €™ |N|| n <w) and ¢ in the language of Galois Morleyization such
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that for every n < w and w C n there is b,, € |[N| such that for all i < n,
N E ¢(a;, b,) < i €w

This paper was written while working on a Ph.D. thesis under the direction of
Rami Grossberg at Carnegie Mellon University, and I would like to thank Pro-
fessor Grossberg for his guidance and assistance in my research in general and
in this work specifically. 1 would also like to thank John Baldwin, Will Boney,
Artem Chernikov, James Cummings, Samson Leung, Marcos Mazari-Armida, Pe-
dro Marun and Andrés Villaveces for their help, comments and suggestions.

It is interesting to comment that Shelah already implicitly discussed similar results
in [She01] dealing with Grossberg’s question “Does I(\, K) = I(A*", K') = 1 imply
Ky++ # (7 and in its followup [She09a], Chapter II of [She09c|, and [She09b],
Chapter VI of [She09d]. More specifically, in [She09d, VI.2.3] and [She09d|, VI.2.5]
Shelah considered the number of branches of a tree as a bound of Galois types
over a model.

2. PRELIMINARIES

Notation 2.1.

(1) For any structure M in some language, we denote its universe by |M|, and
its cardinality by ||M||.

(2) For cardinals A and g, [\, p) :={x € Card | A < Kk < pu}. [N\, 00) :={K €
Card | A < k}.

(3) K[)\#) = {M € K | ||MH € [)\,,U)} K)\ = K[)\7)\+)

Definition 2.2. For K an AEC, we say:

(1) K has the amalgamation property (AP) if for all My < M, for £ = 1,2,
there is N € K and K-embeddings f, : My, — N for ¢ = 1,2 such that
J1 1= f2 Taso-

(2) K has the joint embedding property (JEP) if for all My, M; € K there are
N € K and K-embeddings f, : M; — N for { =0, 1.

(3) K has no maximal models (NMM) if for all M € K there is N >, M.

Remark 2.3. For a property P, e.g. amalgamation, we say that K, has P or that
K has M\-P if we restrict to K in the above definition.

Definition 2.4.

(1) K3 :={(a, M,N) | M,N € K, M <x N,a € |N| — |M|}.
(2) For (ag, Mo, No), (a1, My, Nv) € K3, (ao, Mo, No) < (a1, My, Ny) if My <
Ml, ag — ap and N() SK Nl.
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(3) For (ag, My, No), (ay, My, N;) € K3 and K-embedding h : Ny — Ny,
(CL(),M(),N()) Sh (al,Ml,Nl) if h rMo: M(] — M1 is a K—embedding and
h(ao) = ay.

Definition 2.5.

(1) For (ao, Mo, No) (CLl, Ml, N1> € Ki), (CI,O7 Mo, No)Eat(al, M17 Nl) if there are
NeK, fo: No— N,and f; : Ny - N K-embeddings such that fy(ag) =
filar) and folvu= film

(2) FE is the transitive closure of E.

(3) For (a, M,N) € Ki’, the Galois type of a over M in N is gtp(a/M,N) =
[(CL, M, N)]E

(4) For M € K, gS(M) := {gtp(a/M,N) | (a, M,N) € K3}.

Remark 2.6. If K has AP then £, = E.

Definition 2.7. Assume that K, has AP. For M, N € K, p € ¢S(M) and K-
embedding h: M — N, h(p) := gtp(h/(a)/h[M], N), where b/ : M" — N’ extends
h and (a, M, M") € p. Note that h(p) does not depend on the choice of (a, M, M")
or h'. See [Leu23, 3.1] for a proof.

Definition 2.8. Let (M; | ¢ < §) be increasing continuous. A sequence of types
(pi € S(M;) | @ < §) is coherent if there are (a;, N;) for i < § and f;; : N; = N;
for j < i < ¢§ such that:

(1) fri= fﬂofk]forallk<j<i.

(2) gtp(az/MuN)

(3) fi Tag;= i,

4) 13, Z(a]) = Q-
The notion of coherent sequence of types first appeared in |[GV06, 2.12], Here we
use the version in [MA20| 3.14] that avoids the use of a monster model.

Fact 2.9. Let 0 be a limit ordinal and (M; € K | i < ¢) increasing continuous,
and (p; € gS(M;) | i < 0) a coherent sequence of types. Then there is p € gS(M(;)
an upper bound of (p; € gS(M;) | i < 9).

Fact 2.10. [Bal09, 11.3(2)] Let § be a limit ordinal, (M; € K | i < J) increasing
continuous, and (p; € gS(M;) | i < §) a sequence of types with upper bound
p € S(M(;) Then there are (N; | ¢ < § and (f;; | j < i) that witness (p; €
gS(M;) | © < 6) a coherent sequence.

Definition 2.11. [She0Ol| 0.22(2)] Let > A. N € K, is saturated in p over X if
for all M <x N, A < ||M|| < p, N realizes gS(M).

Definition 2.12. [She0l, 0.26(1)] Let © > A. N € K, is homogeneous in
for Xif for all My <gx N, M; <g My € Ky, A\ < ||M| < |[|[Ma]| < u, there is
K-embedding f : My — N over M;.
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Fact 2.13. [She01, 0.26(1)] Let x> A. If K has AP then M € K, is saturated
over u for A if and only if M is homogeneous over u for A.

Definition 2.14. [She7la] For a cardinal A,
ded A :=sup{x | 3 a regular p and a tree 7" with < A nodes and « branches of
length u, |T'| = k}.

Fact 2.15. [She78| I1.4.11] Let T" be a complete first order theory and ¢ a formula
in its language. ) is an infinite cardinal such that 2* > ded ). The following are
equivalent:

(1) ¢ has the independence property.
(2) |S4(A)| > ded |A] for some infinite set A, |A| = \.
(3) 1S4(A)| = 21! for some infinite set A, |A| = .

Fact 2.16. [She78| 11.4.12] Let T' be a complete theory in countable language,
and fr(A) = {|S(M)| | M = T, ||M| = A}. Then fr()) is exactly one of: A,
A+ 280 AR ded A, (ded M) or 2}, See also [Kei76].

It is reasonable to propose the following definition:

Definition 2.17. Let K be an AEC, A > LS(K). K has NIP if for all M € K,
|gS(M)] < ded A.

At present it is unclear that we have discovered the “correct” notion. In fact, it
is plausible that there are several different notions that are equivalent when K is
an elementary class, but distinct for some non-elementary K. One weakness of
our definition is that unlike the corresponding first order notion, it is probably not
absolute.

Grossberg raised the following question:

Question 2.18. Is there an equivalent notion which is absolute (at least for AECs
K with LS(K) = X, which are also PCy,)?

Fact 2.19. [JS13, 2.5.8] Assume K has JEP, AP and NMM. Suppose there is
Sbs C ¢S family of types on K satisfying only (Density), (Invariance), and for all
M € K, |S¥(M)| < A*. See Definitions [3.1] and [3.3]

(1) If (M, € K\ | @ < A\T) is increasing and continuous, and there is a sta-
tionary set S C AT such that for every o € S and every model N, with
M, <k N, there is a type p € S*(M,) which is realized in My+ and in N,
then M,+ is saturated in A™ over X\ and full over M,.

(2) For all M € Ky, [gS(M)| < AT

The following is an example of an AEC satisfying NIP that is not elementary or
stable.
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Example 2.20. [JS13] 2.2.4] Let A be a cardinal. Let P be a family of AT subsets
of \. Let 7 := {R, : @ < A} where each R, is an unary predicate. Let K be the
class of models M for 7 such that for each a € |[M|, {a € A\ | M | Ru(a)} € P.
Note that K is not elementary. Let <x be the substructure relation on K. The

trivial A\-frame on K, satisfies the axioms of a semi-good A-frame [JS13| 2.1.3], so
in particular by Fact K, satisfies NIP. On the other hand, it is unstable.

The next is an algebraic example of an AEC that satisfies NIP and is not elemen-
tary or stable.

Example 2.21. (ded A = (ded \)™) Let K be the class of real closed fields, and
F <k Lif and only if FF < L and L/F is a normal extension, so (K, <f) is not
elementary. Since (K, <) is NIP but unstable, the number of L, syntactic types
over M € K, which are orbits of Auty(€), coincide with Galois types ¢gS(M).
The number of types is bounded by ded X = (ded A\)* but strictly more than ).

Definition 2.22. [She09d, VI.2.9]

(1) For M € K and I' C gS(M), I is inevitable if for all N >, M there is
a € |[N| — |M| with gtp(a/M,N) € T.
(2) For M € K and I" C ¢S(M), I" is Si-inevitable if for all N > M, if there
is p € S,(M) realized in N then there is ¢ € T" realized in N.
Definition 2.23. [She09d, VI.1.12(1)] We say S, is a <k, -type-kind when:
(1) S, is a function with domain K.
(2) Su(M) C gS(M) for all M € K.
(3) Si(M) commutes with isomorphisms.
Definition 2.24. [She09d, VI.1.12(2)] We say S; is hereditarily in S when: for
M <k N and p € S3(N) we have p [yy€ S1(M) = p € Si(N).
Definition 2.25. Let M € K. p € gS(M) is < u-minimal if for all M < N € K,
{a € gS(N) - q Tu=p}| < .
Spmminimal () .= {p € gS(M) | pis < p-minimal}.
Remark 2.26. S<#-minimal anq §r=al (defined in Lemma [3.14]) are hereditary in
gS.

The following principle known as the weak diamond was introduced by Devlin and
Shelah [DST7§].

Definition 2.27. Let S C AT be a stationary set. ®3.(S) holds if and only if
VF : (2 =2 3¢ : At — 2 such that Vf : At — 2) the set {a € S: F(f o) =
g(a)} is stationary.

Fact 2.28.
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(1) 28 < 2*" if and only if ®2, (A*) holds.

(2) ®3.(S) holds for a stationary set S C AT if and only if VF : (2 x 2 x
AT)<AT 52 390 A — 2 such that Vi € 227 Vr € 22 Vh : AT — AT the set
{a €S :F(nlaV lash [o) = g(a)} is stationary.

(3) If @3, (AT) holds then there exists {S; € AT : ¢ < At} pairwise disjoint
stationary sets such that @3, (S;) for each i < A*.

Fact 2.29. [She09d, V1.2.18] Assume A-AP. We have (A, K) = 2" when:

(1) 2* < 22",

(2) ch() > \*.

( ) S C S<ufmim'mal

(4) |S«(M,)| > p for some M, € K.

(5) if M, <x M € K, no subset of S,(M) of size < u is S,-inevitable.

Fact 2.30. [She09d, VI.2.11(2)] For every M € K we have |S,(M)| < X when:

(1) K has AP in A.

(2) S, is a hereditary <g,-type-kind in ¢S.

(3) For every M € K, there is an S,-inevitable I'y; C ¢S(M) of cardinality
<A

3. THE w*-cooD FRAME

In this section we define w*-good frames, and show that K, has NIP if and only
if K has a w*-good A-grame under additional assumptions.

Definition 3.1. [She09c, II1.0] Let A < p, where A is a cardinal, and p is a
cardinal or co. A pre-[\, p)-frame is a triple s = (K, L, S*) such that:

(1) K is an AEC with A > LS(K) and K # 0.
(2) S C UMEK[M) gS(M). Let S*(M) := gS(M) N S.
(3) L is a relation on quadruples (M, My, a N) where My <y M; < N, a €

|N| and My, My, N € Ky ). We write a J/ My, or we say gtp(a/M;, N)
does not fork over M, when the relatlon J, holds for (Mo, Ml, a,N).

(4) (Invariance) If f : N = N’ and a \L M, then f(a) J/ fIMy). If
Mo fIMo]

gtp(a/Mo, N) € Sbs(]]\vﬂ), then gtp(f(a)/f[M], N') € S*(f[Mi]).

(5) (MOHOtOHiCity) If a \L M1 and MO SK M(l) SK M{ SK M1 SK N’ SK
M,
0 N/ N//
N <k N” with N” € K, ) and a € |[N'|, then a | M{ and a | Mj.
Mg Mg
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N
(6) (Non-forking Types are Basic) If a | M then gtp(a/M,N) € S*(M).
M

Definition 3.2. [MA20, 3.6] A pre-[\, p)-frame s = (K, L, S%) is a w-good frame

if:

(1) Ky has AP, JEP and NMM.

(2) (Weak Density) For all M <y N € K, there is a € |[N| — |M]| and M’ <
N’ € K, such that (a, M, N) < (a, M', N') and gtp(a/M’, N') € S*(M").

(3) (Existence of Non-Forking Extension) If p € S**(M) and M <y N, then
there is ¢ € S**(V) extending p which does not fork over M.

(4) (Uniqueness) If M <, N both in K ), p,q € S*(N) both do not fork
over M, and p [y= q [u, then p = gq.

(5) (Continuity) If § < g a limit ordinal, (M; | i < ¢) increasing and con-
tinuous, (p; € S**(M) | i < ), and i < j < & implies p; | M; = p;, and
ps € S(Mjs) is an upper bound for {p; | i < §), then p € S**(Ms). Moreover,
if each p; does not fork over M, then neither does ps.

Definition 3.3. A pre-[\, pu)-frame s = (K, L, S%) is a w*-good frame if s satisfies:

(1) K has AP, JEP and NMM.

(2) (Uniqueness).

(3) (Basic NIP) For all M € K, |S*(M)] < ded ||M]].

(4) (Few Non-Basic Types) For all M € K, |gS(M) — S*(M)| < .

(5) (Continuity~) If 6 < p a limit ordinal, (M; | i < ¢) increasing and con-
tinuous, (p; € S*(M;) | i < 6), and i < j < 4 implies p; [a,= p;, and
ps € gS(M;) is an upper bound for (p; | i < 0). If each p; does not fork
over My then ps € S*(Ms) and ps also does not fork over M.

(6) (Transitivity) if p € S*(My) does not fork over M; < My, and p [, does
not fork over My <gx M, then p does not fork over Mj.

Remark 3.4. (Continuity-) is weaker than (Continuity). Without not forking
over My one cannot deduce that ps € SbS(Mg).

Remark 3.5. In a w-good frame (Transitivity) is implied by several other proper-
ties including (Existence of Non-Forking Extension). For a w*-good frame, where
(Existence of Non-Forking Extension) does not hold in general, we need to explic-
itly include (Transitivity) as an axiom.

Definition 3.6. When p = AT in the previous definitions, we say s is a pre-/w-
good/w*-good A-frame.

From now on we build a w*-good A-frame on K assuming the following:

Hypothesis 3.7 (2*" > 2*). We fix K an AEC and a cardinal A > LS(K) such
that K has AP, JEP and NMM. Assume 1 < I(A*, K) < 2*", and K, has NIP.
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If K is categorical in A\, then K has A-AP by the following fact, which appeared
in [She87, 3.5] first, and a clearer proof can be found in [Gro02, 4.3]. A\-JEP follows
from categoricity, and A-NMM follows from categoricity and Ky+ # (.

Fact 3.8. [She87, 3.5] (2* < 22" ) If I(\,K) =1 < I(A\*,K) < 2*", then K has
the A-AP.

Thus we could also assume:

Hypothesis 3.9. We fix K an AEC and a cardinal A > LS(K) such that K is
categorical in A. Assume 22" > 2} 1 < I K) < 2" and K, has NIP.

Definition 3.10. p = gtp(a/M,N) has the extension property if for all K-
embedding f : M — M, € K, there is ¢ € gS(M;) extending f(p).

Definition 3.11. p = gtp(a/M, N) is A-unique if

(1) p = gtp(a/M, N) has the extension property.
(2) gtp(a, M,N) <;, gtp(a;, M', N;), and gtp(a;/M’, N;) have the extension
property, for [ = 1,2, then gtp(a;/M’, N1) = gtp(az/M’, Ns).
Fact 3.12. [She09d, VI.2.5(2B)] If K, has AP and A > LS(K), gtp(a, M, N)
has > A" realizations in some extension of M (necessarily in K>,+) if and only if
gtp(a/M, N) has the extension property.

Now we define the w*-good A-frame.

Definition 3.13. The preframe s)_,,,, is defined such that:
(1) S*(M) := {p = gtp(a/M, N) | p has the extension property}.
(2) p = gtp(a/M,N) € S"(M) does not fork over My <x M if p [y is
A-unique.
Lemma 3.14. S* (M) := {p € gS(M) | p has < A\-many realizations} satisfies

|S*=a(M)| < X. By realizations we mean realizations in any <y-extension of M
in Ky+. S0 8)_ynq satisfies (Few Non-Basic Types).

Proof. Suppose not, i.e. [S* 4 (M)| > AT,
Claim: There is no I' C S*%(M), || < \ that is inevitable.

Otherwise, suppose there exists such I'. By Fact [2.30] taking S, to be g5, and I'y,
to be I', we have |gS(M)| < \, so in particular [S*~%(M)| < A, contradiction.

Now by the claim and Fact taking S, there to be S*~% and u there to be A*,
we have I(A\*, K) = 2*", contradiction. O

Thus from now on in this section we also assume |S*~%(M)| < \.

Lemma 3.15. 55_un, satisfies the following properties in Definitions [3.1] and
3.3
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(1) (Invariance).

(2) (Monotonicity).

(3) (Non-Forking Types are Basic).
(4) AP, JEP and NMM.
(5) (Basic NIP).

(6) (Uniqueness).

(7) (Transitivity).

Proof. Easy. We prove (Transitivity) as an example. Suppose p € S*(N) does not
fork over My <x N, and p [, does not fork over My <y M. Then (p [ay) Tu,
is A-unique, i.e. p [,y is. Thus p does not fork over M. O

Lemma 3.16 (ded A = A" < 2*). Suppose that s)_,,, satisfies (Continuity). If
p € S¥(M), then there is N > M and g € S*(N) extending p that does not fork
over N. In particular, for any N’ >k N there is unique ¢’ € gS(N’) extending ¢
that does not fork over N.

Proof. 1t suffices to show that there is a Ad-unique type above any basic type. By
Fact let € € K+ be saturated in AT over \. It is also homogeneous in A™
over \ by Fact . Let (a, M, N) € K3} such that gtp(a/M, N) has the extension
property and there is no A-unique type above gtp(a/M, N). Build (a,, M,, N,) €
K3 for n €* 2 and h,,,, for n < v €<* 2 such that:

(1) (aq, My, N<>) (a, M, N).

(2) (ay, My, Ny) <p,, (al,,Ml,,N ) for n < w.

(3) hyp=hy,o0hy, forn<v<np.

(4) M”I = MW 1, N, n~0 = =N, 71, and hﬂﬂ]ﬂo r ]\477 = hnﬂiﬂl r M77'

(5) gtp(a,-o, M, Ao,Nnao) # gtp(anq,an,qu), both having A™-many re-
alizations.

(6) If n €° 2 for § a limit ordinal, take M, and N, to be directed colimits.

Construction: Base case and limit case are clear. At successor stage use non-\-
uniqueness to get two distinct extensions, each having A*-many realizations.
Enough: Let M <x € € K,+ be saturated over A. Build g, : M, — € for n )
such that:

(1) gy ohy, =g, for v <.
(2) In~0 = gn~1
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This is possible: Base case take gy to be inclusion M <y €. At limit use the
universal property of M, as a directed colimit. At & = 8+ 1, suppose we have g,,.

" / %9
Ce—— My o My —— M,

" DNC A il

J =h
]
>~h n0
gn[Mn] < =, Mn e hn,n”O[Mn]

Use basic extension to obtain the right square and g, and then obtain the middle
square and h. Finally the left triangle is by saturation of €. Now define g,~¢ = ¢,-1
to be the composition of the top row from right to left.

This is enough: For each branch n €* 2, take directed colimit to obtain
(ay, My, N,,). Obtain f, : M, — € by the universal property of colimits such
that f, o h,, = g, for all v < 7, and obtain f; : N, — € extending f, by sat-
uration over . Since each f)(a) € |€], but ||€] = ded A < 2%, there must be
n,v € 2 such that f}(a) = f;(a). Let o < X be the least such that 7(a) # v(a).
Without loss of generality say n(«) = 0 and v(«) = 1. Then the following diagram
commutes:

faohniaom

Nnrmo ¢

(2) z'dT fliOhUTa"l,VT

id
My.~0 —— Nypo-1

with f,’,ohmamom(amaﬂo) = f,ohyr,~1.(ay,~1) since fé(an) = f/(a,), contradicting
requirement (5) of the construction. O

Remark 3.17. The proof of Lemma [3.16]is along the argument of Mazari-Armida
in [MA20, 4.13] and [She09d}, VI.2.25], and the difference is that there the saturated
model over A lies in Ky++. For completeness we included all the details.

Question 3.18. Lemma is a weaker form of (Existence of Non-Forking Ex-
tension). Is it possible to obtain (Existence of Non-Forking Extension) in its full
strength, by perhaps considering another family of basic types and non-forking re-
lation? One could imitate the w-good A-frame in [MA20] and use A-unique types
as basic ones, and then Lemma gives a proof of (Weak Density). However,
then we it is hard to show that having such a frame implies NIP.

The following definition is [She99, 1.8], which is defined for types of any finite
length. Here we only need it for length 1. Thus we use the version from [Bal09,
11.4(1)].

Definition 3.19. (1) K is (k, A)-local if for every increasing continuous chain
M = ,.,, M; with ||M|| = X and for any p,q € gS(M): if p [a,= q [, for
all 7 then p = q.
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(2) K is (< K, A)-local if K is (u, A)-local for all u < k.
Lemma 3.20. If K is (< AT, A)-local, then §)_,n, has (Continuity ™).

Proof. Let M;, i < § be increasing continuous. p; € S*(M;) increasing and for
i < j < 6 we have p; [y,= ps, and ps upper bound. Suppose ps has < A-many
realizations. Then there is a set S of cardinality A\™ of realizations of pgy, such
that for each a € S, by locality there is ¢ < § such that a realizes p; but not
pir1. By pigeonhole principle for some i < § there are A™-many realizations of
p; that are not realizations of p;;. Since there are < A-many types in S(M;;1)
that have < A-many realizations, there must be another type in S(M;,1) with \™
realizations distinct from p;, 1, which contradicts A-uniqueness of p; 1.

For the moreover part, if py does not fork over My, so py = ps [, 1S A-unique, i.e.
ps does not fork over M. O

Theorem 3.21 (2*" > 2). Let K be an AEC with A > LS(K) with A-AP, \-
JEP and A-NMM, and 1 < I(A\*, K) < 2", K, has NIP if and only if there is a
w*-good A-frame on K except possibly without (Continuity™). Moreover,

(1) (ded A = AT < 2}) If 5)_yp, satisfies in addition (Continuity), then the w*-
good frame satisfies in addition that if p € S**(M), then there is N > M
and ¢ € S¥(N) extending p that does not fork over N. In particular, for
any N’ >x N there is ¢ € gS(N') extending ¢ that does not fork over V.

(2) if K is (< A*, A)-local, then the frame has (Continuity™).

Proof. The moreover part follows from Lemma [3.16] O

Corollary 3.22 (2" > 2%). Let K be an AEC categorical in A > LS(K), and
1 < I(A\*,K) < 2. K, has NIP if and only if there is a w*-good A-frame on K
except possibly without (Continuity ™). Moreover,

(1) (ded X = AT < 2}) If 5)_,p, satisfies in addition (Continuity), then the w*-
good frame satisfies in addition that if p € S (M), then there is N > M
and ¢ € S¥(N) extending p that does not fork over N. In particular, for
any N’ > N there is ¢ € gS(N') extending ¢ that does not fork over N.

(2) if K is (< A*, A)-local, then s)_,,, has (Continuity ™).

4. SYNTACTIC INDEPENDENCE PROPERTY

In this section we assume tameness, and use Galois Morleyization to show that the
negation of NIP leads to being able to encode subsets, as a parallel of first order
independence property.

Hypothesis 4.1. Let x be an infinite cardinal and K an AEC. Let 7 = L(K) be
its underlying language.



AN NIP-LIKE NOTION IN ABSTRACT ELEMENTARY CLASSES 13

We first extend the definition of Galois types to longer lengths and set-valued
domains.

Definition 4.2. (1) K :={(a,A,N) | N € K, A C|N|,a is a sequence from |N}.

(2) For (ag, A, Ny), (a1, A, Ny) € K3, (ag, A, No)E4i(ay, A, Ny) if there are N €
K, fo: No —a N, and f; : Ny -4 N K-embeddings such that fy(ag) =
fi(a1), fo Ta= fi la.

(3) E is the transitive closure of Ey;.

(4) For (a, A, N) € K3, the Galois type of a over A in N is gtp(a/A, N) :=
[(a’7 Aa N)]E

(5) For N € K and A C |N|, @ an ordinal or oo, gS<*(A; N) := {gtp(a/A,N) |
(a,A,N) € K3 and a €<* |N|}. gS*(A; N) is defined similarly.

Remark 4.3. In the case where A = |M| for M € K, Uy, 95 (IM|,N) is
what we defined as gS(M) in Definition

The following technique first appeared in [Vas16¢|, which allows one to work with
Galois types in a syntactic way.

Definition 4.4. Let x be an infinite cardinal and K an AEC. The (< k)-Galois

Morleyization of K is K , an AEC in a (< k)-ary language 7 extending 7 such
that:

(1) The structures and the substructure relation <. in K are the same as K.

(2) For each p € gS<"(0), there is a predicate of the same length R, € 7. For
each M € K and p, define M = R,[a] if and only if gtp(a/0, M) = p. By
extension, one can interpret quantifier-free L, ,(7) formulas.

(3) The (< k)-syntactic type of a €<% | M| over A C |M]| is tqu_Lm(ﬂ((z/A, M),
the set of all quantifier-free L, .(7) formulas with parameters from A that
a satisfies. For a particular quantifier-free L, ,.(7)-formula ¢(z, ),
tp,(b/A, M) i= {6(z,) |a € A M [ 6(b,a)}. )

(4) For M € K and A C |M|, S(;fa—Lm(%)(A; M) = {tp(b/A, M) | be=~> |M|}

Remark 4.5. There are < 2<(LSE)"+#) formulas in 7.

Fact 4.6. [Vasl6c, 3.18(2)] Under the notation of the previous definition, for each
ordinal o, M € K, A C M, gtp(b/A, M) — tPyf-1, N(%)(b/A, M) from gS*(A; M)

to S(Oi_f—L (%)(A; M) is bijective if and only if K is (< k)-tame.

Fact 4.7. [Grol 2.7.29] (Morley’s method) Let T' be a first order theory with
built-in Skolem functions and I' a set of T-types. Let p, be a T-type in n variables
and ¢, a new constant for each n < w such that:

(1) T* 2T U{pn(co,...,cn) | n < w} is consistent
(2) Each p, is realized in some M € EC(T,T).
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Then there is N € EC(T*,T).

Theorem 4.8. Suppose K is (< Ng)-tame, M € K, C C |M|, X := ||C| >
J5(LS(K)) and (ded A)2“°"™ = ded A. Suppose |¢S*(C; M)| > ded A. Then there
is N € K, (a, €™ |N||n < w) and ¢ in the language of Galois Morleyization such
that for every n < w and w C n there is b,, € |N| such that for all i < n,

N = ¢(a;, b,) < i€w

Proof. Let K be the (< Ny) Galois Morleyization of K. Note that both classes have
the same Galois types. By Shelah’s Presentation Theorem K = PC(T,T',7) with
|T| < 259 with the language of T containing 7. Then by tameness and the pre-
vious fact ’S(llffL (f)(C’ ; M)| > ded A, so for some quantifier-free formula ¢(y, )
in L, (7) with |Sy(C; M)| > ded A, since there are < 229)_many quantifier-free
Ly, ., (7)-formulas.
Without loss of generality C' = A\ = |C|. Let p := (ded A)™. For notational
simplicity we view S,(C; M) as S, a family of subsets of “@ (', where

AeS = {g(a,z)|ae A} € S,(C).
We also assume ¢ has length 1. The proof for other cases is similar.
Claim: For all « < A, if [{ANa | A€ S} > p, then o > (Jo(LS(K)))T.
Proof of Claim: Suppose thereis a < A, [{ANa | A € S} > p. Since {ANa | A €
S} is the set of branches of the a subtree of <@2, ded A < u < ded [<*2| < ded 2!,
so 24l > X\ > J3(LS(K)), so |a| > J3(LS(K)). Thus the claim holds.
We may assume A > Jy(LS(K)) and for all « < A\, [{ANa| Ae S} <p If
this holds, then we are done since A > J3(LS(K)) > Jo(LS(K)). If not, replace A
with smallest av < A such that [{ANa | A € S}| > p. By minimality for all 5 < a,
{ANB | A € S} < p. Such a might be small, but by the claim o > (35(LS(K))) ",

and this is enough for the arguments of the rest of the argument.
For each a < A let 8% := {(ANna,a) | A€ S}. U,Ss is a tree when equipped
with

(Al,Oél) < (AQ,O[Q) — a1 < ag A Al = Ag N aj.
Let

Sa={s€Sa|{teSy|s<t}=>nu}
and
Sy i={s€ SY|Va < \s [.€ S})}.
We build S,, € S} for n < w, A > a'(n,0) > ... > a(n,n—1) > i for each i € S,
and (A,7) € S}, and p,, € S%(0) such that:
(2) |Su| = A for all n
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(3) Spi1 €S, for all n.
(4) pn € ppyq for all n.
(5) For all n < m, (A,i) € S, and (B, j) € Sy, (4,1) < (B,j) € U, S

Dn :tpT(<a;4(n,0),...aA(n n—1))/0, M) = tpr((a; B(m,0),... B(m n—1))0, M).
<

(6) For all (A,i) € S, and w C n there is (A,,\) € S} such that (4,1)
(Ay, ) and af'(n,i) € A, <= i€ w.

Construction: We build these objects by induction on n. When n = 0 there is
nothing to do. Assume we have built S,,, a*(n, j) for (A,i) € S, and p,.

Fix s = (A,i) € S,. Clearly T, := {t € Uy, S5 | s < t} is a tree. For every
s<teSs), B :={t'|s<t<t}isabranch of Ty, and t; # t, = By, # By,.
Since
Si-si=1 U ftetis<t<n
a<\,s€S9—SY

Ts has > p-many branches, and hence |Tg| > A. Then for some i/, |T NnSH > A
Let s; = (A;,¢) € Ty N S} for j < AT. Now let af*(n + 1,k) = a, 7(n, k) for all
k < n. Let a(n+1,n) be the least o such that so(a) # s1(a), i.e. a € Ag— A; or
a € A; — Ag. Note that i < a!(n+1,n) <i' < a(n+1,n) < ... < a;(n+1,0).
Since |S,| = A > (J2(LS(K)))*, and there are < Jo(LS(K)) T-types, by the
pigeonhole there is S, 11 € Sy, [Snt1] = A such that for all (A7), (B,J) € Snt1,

tpT(<a?(n>0)7"'Oéz4(n7n_ 1)>/®7M) :tpT(< (n O) ]B(n n_1)>®7M)7
and define this type to be p,1.

T* =T U{3x(\ 6(c;, 2)" ") |w S n <w}U{palco,... 1) | n < w}
<n
is consistent, and by Morley’s method we are done. O

Question 4.9. For K an elementary classes, the conclusion of the previous the-
orem implies that K can encode arbitrary subsets of any set by the compactness
theorem. Here one can only encode subsets of n € w.

(1) Can K encode larger subsets?

(2) Is there a Hanf number? I.e. Are there k, pu such that if K can encode
subsets of p with size < k, then K can encode all subsets? Grossberg
conjectured that the Hanf number is J,rsx) should it exist.
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