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focuses on the space of global types which are finitely satisfiable in a fixed
small model.

@ This is a seemingly appropriate setting because this space of types,
equipped with the Newelski product, is canonically isomorphic to the Ellis
semigoup of a particular group action.

© However, the Newelski product naturally extends to the space of global
types which are invariant over a fixed small model. Similarly, this space of
types with the extended product forms a left-continuous compact
Hausdorff semigroup and is thus also susceptible to Ellis theory analysis.

© We take this extended product seriously and study the minimal ideals and
Ellis subgroups of the semigroup of invariant types as well as their
connections to the semigroup of finitely satisfiable types.

@ We primarily focus on definably amenable NIP groups.
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Outline

Our talk is outlined as follows:
@ Semigroup theory
@ Model theoretic dynamics
© New results
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terminology from the theory of semigroups.

Suppose that Y is a compact Hausdorff spaces and (Y, *) is a semigroup.

© A subset | C Y is called a left ideal of Y if | is closed and Y x/ C |. We

say that / is a minimal left ideal if / is a left ideal and does not properly
contain any other left ideal.

@ We say that (Y, %) is left-continuous if for every p € Y the map
—xp:Y — Y is continuous.

© Let u € Y. We say that v is idempotent if u* u = u.

The minimal left ideals of left-continuous compact Hausdorff semigroups admit
a strong decomposition theorem.
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Theorem (Ellis, Nerurkar)

Suppose that (Y, x) is a left-continuous compact Hausdorff semigroup. Then
(Y, *) admits a minimal left ideal. Let | be a minimal left ideal of Y.

@ There exists some u € | such that u is idempotent, i.e. u* u = u.
@ For each idempotent u € I, ux 1 is a group.

© For any minimal left ideal J and idempotent v € J we have that v x J is
isomorphic to u x| (as an abstract group). We call v = J an Ellis
subgroup of Y.

@ |/ is the disjoint union of its Ellis subgroups. More explicitly, if id(/) is the
collection of idempotents in I, then

| = |_| uxl.

ueid(/)
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Photograph

@ CamScanner
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Semigroup theory
[e]e]e] ]

Take-away

Take away: Given a left continuous compact Hausdorff semigroup, one can
associate a canonical group object, i.e., the isomorphism type of the Ellis
subgroups.
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certain types spaces with the Newelski product.

Let G be a group, so a structure in a language £ := {-,1,7*,...} which models
the axioms of a group. Let G be a monster model so that G < G.

Q A type p € 5¢(G) is said to be invariant over G if whenever we have
©(x, b) € pand a =¢ b, then ©(x, a) € p.

@ We let S™(G, G) denote the space of global types which are invariant
over G.

©Q A type p € 5.(G) is said to be finitely satisfiable in G if whenever we have
©(x, b) € p, there exists some ¢ € G such that G |= ¢(c, b).

@ We let S%(G, G) denote the space of global types which are finitely
satisfiable in G.

Exercise: S(G, G) C S™(G, G).
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We now define the semigroup operation on the space of types:

Suppose that p,q € S™(G, G). Then we say that o(x, c) € p * q if and only if
G = ¢(a- b, c) where b |= plcc, and a = pleeb-

Intuitively, realize g, realize p over the realization of g, then consider the type
of the product.

Both S"'(G, G) and S®(G, G) with the Newelski product are left-continuous
compact Hausdorff groups.

The space S%(G, G) has been extensively studied. Why?

@ Historical; Newelski originally considered S«(G), when G is stable;
extended to all types definable; then Se:(G)...

Q sf(g7 G) is isomorphic to an object from classical topological dynamics.
Namely, the Ellis semigroup of a particular group action.
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Example: Integers cont.
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Recall we are interested in the ideal groups of S5(G, G) and S™(G, G). The
case of S(G, G) has the following history.

@ Shelah: If G is NIP, then we can associated to G a canonical (topological

group), namely G/G% [G% is the smallest type-definable subgroup of
bounded index].

@ Newelski Conjecture: If G is NIP, then the Ellis subgroups of S%(G, G) are
isomorphic to G/G%.

@ Pillay-Penazi-Gismutulin: SL>(RR) is a counterexample.

© Chernikov-Simon: If G is NIP + definably amenable, then Newelski's
conjecture holds.

More explicitly, the quotient map 7 : G — G/G* extends to a map # : 5,(G)
and 7|ysr : ux | — G/G% is an algebraic isomorphism [where / is a minimal left
ideal and u is an idempotent in /].
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Definably amenable groups

Suppose that T is NIP. Then the following are equivalent:

@ G is definably amenable, i.e., G admits a left invariant measures on the
collection of definable subsets.

(2] SL"V(Q , G) admits a left (right) strong f-generic, i.e., there exists some
p € S™(G, G) such that every global left (right) translate of p is still an
element of S™(G, G).

If G is NIP and definably amenable, we let F, be the collection of global right
strong f-generics.
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New results
0O@000000

Retraction

If the underlying theory is NIP, there exists a mysterious map
F:S™(G,G)— SE(G,G)

whose definition is a little bit delicate.

Fact (Simon)

The retraction map F from Si(G, G) to S&(G, G) has the following properties:
Let p,q € S(G, G), then

Q@ F(p)le=p
@ F is continuous,

© If p is finitely satisfiable in M, then F(p) = p,

© For any M-definable function f, f.(F(p)) = F(f(p)).

@ If q is finitely satisfiable in M, then F(qx ® py) = qx ® F(py)-

G,

Question: Does the retraction map induce an isomorphism between Ellis
subgroups?
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It's complicated

Sometimes? It's a little complicated...
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F(t) = u. Suppose that every coset of G has a representative in G. Then the
following are equivalent:

Q Foreveryge G(M), u-gcuxl.

(2] FM|t*5iGnV(u,M) Dt SEY(U, M) — ux 1 is an isomorphism of Ellis subgroups.
4

17/21



New results
[e]e]e] le]elele)

Abelian groups

It is essentially true for abelian NIP groups.

Lemma

Suppose that G is NIP and definably amenable. Let | be a minimal left ideal
contained in F(F.). Fix an idempotent u € I. Consider t € F, such that

F(t) = u. Suppose that every coset of G has a representative in G. Then the
following are equivalent:

Q Foreveryge G(M), u-gcuxl.

inv

(2] FM|t*5iGnV(u,M) 1 tx S¢Y(U, M) — ux1 is an isomorphism of Ellis subgroups.

.

Theorem

Suppose G is NIP, abelian, and G contains representatives for each coset of
G%. Let | be a minimal left ideal of F(F,). Fix an idempotent u € |. Consider
t € F; such that Fy(t) = u. Then the map

inv

FM\HSE.V(M’M) :t*x S¢V(U, M) — u x| is an isomorphism of Ellis subgroups.

A
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Example

The retraction map is not an isomorphism of Ellis groups in R »x {£1}.
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Example

The retraction map is not an isomorphism of Ellis groups in R »x {£1}.
Elements of R x {£1} are elements of the cartesian product R x {£1} with
the following group law:

o a={ 400, 1
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Upside down and backwards
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pt=tp(a'/G).
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p~t =tp(a'/G).

We remark that the inversion map sends invariant types to invariant type,
finitely satisfiable types to finitely satisfiable types.

Definition

We say that a definably amenable G is dfg if there exists some p € S™ (G, G)
such that p is definable over G and every global translate of p is also definable
over G.

Intuition: dfg groups are the opposite of compact.

Theorem (G.-Rzepecki 2025+)

Suppose that T is NIP, G is dfg, and t is a right dfg type over M. Then
Fo™l, sinv(u,my 1S N anti-isomorphism from an invariant Ellis subgroup to a
finitely satisfiable Ellis subgroup. Precomposing with group inversion give an
honest-to-goodness isomrophism.
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Thank you

Thank you!
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