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Introduction

1 A large part of the model theory research involving topological dynamics
focuses on the space of global types which are finitely satisfiable in a fixed
small model.

2 This is a seemingly appropriate setting because this space of types,
equipped with the Newelski product, is canonically isomorphic to the Ellis
semigoup of a particular group action.

3 However, the Newelski product naturally extends to the space of global
types which are invariant over a fixed small model. Similarly, this space of
types with the extended product forms a left-continuous compact
Hausdorff semigroup and is thus also susceptible to Ellis theory analysis.

4 We take this extended product seriously and study the minimal ideals and
Ellis subgroups of the semigroup of invariant types as well as their
connections to the semigroup of finitely satisfiable types.

5 We primarily focus on definably amenable NIP groups.
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Outline

Our talk is outlined as follows:

1 Semigroup theory

2 Model theoretic dynamics

3 New results
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Semigroup Theory I

Semigroups arise naturally in the study of dynamical.

We recall some
terminology from the theory of semigroups.

Suppose that Y is a compact Hausdorff spaces and (Y , ∗) is a semigroup.

1 A subset I ⊆ Y is called a left ideal of Y if I is closed and Y ∗ I ⊆ I . We
say that I is a minimal left ideal if I is a left ideal and does not properly
contain any other left ideal.

2 We say that (Y , ∗) is left-continuous if for every p ∈ Y the map
− ∗ p : Y → Y is continuous.

3 Let u ∈ Y . We say that u is idempotent if u ∗ u = u.

The minimal left ideals of left-continuous compact Hausdorff semigroups admit
a strong decomposition theorem.
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Semigroup Theory II

Theorem (Ellis, Nerurkar)

Suppose that (Y , ∗) is a left-continuous compact Hausdorff semigroup. Then
(Y , ∗) admits a minimal left ideal.

Let I be a minimal left ideal of Y .

1 There exists some u ∈ I such that u is idempotent, i.e. u ∗ u = u.

2 For each idempotent u ∈ I , u ∗ I is a group.

3 For any minimal left ideal J and idempotent v ∈ J we have that v ∗ J is
isomorphic to u ∗ I (as an abstract group). We call v ∗ J an Ellis
subgroup of Y .

4 I is the disjoint union of its Ellis subgroups. More explicitly, if id(I ) is the
collection of idempotents in I , then

I =
⊔

u∈id(I )

u ∗ I .

5 / 21



Semigroup theory Model Theory New results

Semigroup Theory II

Theorem (Ellis, Nerurkar)

Suppose that (Y , ∗) is a left-continuous compact Hausdorff semigroup. Then
(Y , ∗) admits a minimal left ideal. Let I be a minimal left ideal of Y .

1 There exists some u ∈ I such that u is idempotent, i.e. u ∗ u = u.

2 For each idempotent u ∈ I , u ∗ I is a group.

3 For any minimal left ideal J and idempotent v ∈ J we have that v ∗ J is
isomorphic to u ∗ I (as an abstract group). We call v ∗ J an Ellis
subgroup of Y .

4 I is the disjoint union of its Ellis subgroups. More explicitly, if id(I ) is the
collection of idempotents in I , then

I =
⊔

u∈id(I )

u ∗ I .

5 / 21



Semigroup theory Model Theory New results

Semigroup Theory II

Theorem (Ellis, Nerurkar)

Suppose that (Y , ∗) is a left-continuous compact Hausdorff semigroup. Then
(Y , ∗) admits a minimal left ideal. Let I be a minimal left ideal of Y .

1 There exists some u ∈ I such that u is idempotent, i.e. u ∗ u = u.

2 For each idempotent u ∈ I , u ∗ I is a group.

3 For any minimal left ideal J and idempotent v ∈ J we have that v ∗ J is
isomorphic to u ∗ I (as an abstract group). We call v ∗ J an Ellis
subgroup of Y .

4 I is the disjoint union of its Ellis subgroups. More explicitly, if id(I ) is the
collection of idempotents in I , then

I =
⊔

u∈id(I )

u ∗ I .

5 / 21



Semigroup theory Model Theory New results

Semigroup Theory II

Theorem (Ellis, Nerurkar)

Suppose that (Y , ∗) is a left-continuous compact Hausdorff semigroup. Then
(Y , ∗) admits a minimal left ideal. Let I be a minimal left ideal of Y .

1 There exists some u ∈ I such that u is idempotent, i.e. u ∗ u = u.

2 For each idempotent u ∈ I , u ∗ I is a group.

3 For any minimal left ideal J and idempotent v ∈ J we have that v ∗ J is
isomorphic to u ∗ I (as an abstract group). We call v ∗ J an Ellis
subgroup of Y .

4 I is the disjoint union of its Ellis subgroups. More explicitly, if id(I ) is the
collection of idempotents in I , then

I =
⊔

u∈id(I )

u ∗ I .

5 / 21



Semigroup theory Model Theory New results

Semigroup Theory II

Theorem (Ellis, Nerurkar)

Suppose that (Y , ∗) is a left-continuous compact Hausdorff semigroup. Then
(Y , ∗) admits a minimal left ideal. Let I be a minimal left ideal of Y .

1 There exists some u ∈ I such that u is idempotent, i.e. u ∗ u = u.

2 For each idempotent u ∈ I , u ∗ I is a group.

3 For any minimal left ideal J and idempotent v ∈ J we have that v ∗ J is
isomorphic to u ∗ I (as an abstract group). We call v ∗ J an Ellis
subgroup of Y .

4 I is the disjoint union of its Ellis subgroups. More explicitly, if id(I ) is the
collection of idempotents in I , then

I =
⊔

u∈id(I )

u ∗ I .

5 / 21



Semigroup theory Model Theory New results

Semigroup Theory II

Theorem (Ellis, Nerurkar)

Suppose that (Y , ∗) is a left-continuous compact Hausdorff semigroup. Then
(Y , ∗) admits a minimal left ideal. Let I be a minimal left ideal of Y .

1 There exists some u ∈ I such that u is idempotent, i.e. u ∗ u = u.

2 For each idempotent u ∈ I , u ∗ I is a group.

3 For any minimal left ideal J and idempotent v ∈ J we have that v ∗ J is
isomorphic to u ∗ I (as an abstract group). We call v ∗ J an Ellis
subgroup of Y .

4 I is the disjoint union of its Ellis subgroups. More explicitly, if id(I ) is the
collection of idempotents in I , then

I =
⊔

u∈id(I )

u ∗ I .

5 / 21



Semigroup theory Model Theory New results

Photograph

CamScanner
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Take-away

Take away: Given a left continuous compact Hausdorff semigroup, one can
associate a canonical group object, i.e., the isomorphism type of the Ellis
subgroups.

7 / 21



Semigroup theory Model Theory New results

Semigroups of types

Question: Where do these kinds of semigroups arise in model theory?

Over
certain types spaces with the Newelski product.

Let G be a group, so a structure in a language L := {·, 1,−1 , ...} which models
the axioms of a group. Let G be a monster model so that G ≺ G.

1 A type p ∈ Sx(G) is said to be invariant over G if whenever we have
ϕ(x , b) ∈ p and a ≡G b, then ϕ(x , a) ∈ p.

2 We let S inv
x (G,G) denote the space of global types which are invariant

over G .

3 A type p ∈ Sx(G) is said to be finitely satisfiable in G if whenever we have
ϕ(x , b) ∈ p, there exists some c ∈ G such that G |= ϕ(c, b).

4 We let S fs
x (G,G) denote the space of global types which are finitely

satisfiable in G .

Exercise: S fs
x (G,G) ⊆ S inv

x (G,G).
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Newelski Product

We now define the semigroup operation on the space of types:

Suppose that p, q ∈ S inv
x (G,G). Then we say that ϕ(x , c) ∈ p ∗ q if and only if

G |= ϕ(a · b, c) where b |= p|Gc , and a |= p|Gcb.

Intuitively, realize q, realize p over the realization of q, then consider the type
of the product.

Folklore

Both S inv
x (G,G) and S fs

x (G,G) with the Newelski product are left-continuous
compact Hausdorff groups.

The space S fs
x (G,G) has been extensively studied. Why?

1 Historical; Newelski originally considered Sx(G), when G is stable;
extended to all types definable; then Sext(G)...

2 S fs
x (G,G) is isomorphic to an object from classical topological dynamics.

Namely, the Ellis semigroup of a particular group action.
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Example: Integers

Consider G = (Z; +, 0, <). Then S inv
x (G,G) looks like the following:
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Example: Integers cont.
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Ideal groups in S fs
x (G,G )

Recall we are interested in the ideal groups of S fs
x (G,G) and S inv

x (G,G). The
case of S fs

x (G,G) has the following history.

1 Shelah: If G is NIP, then we can associated to G a canonical (topological
group), namely G/G00 [G00 is the smallest type-definable subgroup of
bounded index].

2 Newelski Conjecture: If G is NIP, then the Ellis subgroups of S fs
x (G,G) are

isomorphic to G/G00.

3 Pillay-Penazi-Gismutulin: SL2(R) is a counterexample.

4 Chernikov-Simon: If G is NIP + definably amenable, then Newelski’s
conjecture holds.

More explicitly, the quotient map π : G → G/G00 extends to a map π̂ : Sx(G)
and π|u∗I : u ∗ I → G/G00 is an algebraic isomorphism [where I is a minimal left
ideal and u is an idempotent in I ].
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Definably amenable groups

Fact

Suppose that T is NIP. Then the following are equivalent:

1 G is definably amenable, i.e., G admits a left invariant measures on the
collection of definable subsets.

2 S inv
x (G,G) admits a left (right) strong f -generic, i.e., there exists some

p ∈ S inv
x (G,G) such that every global left (right) translate of p is still an

element of S inv
x (G,G).

If G is NIP and definably amenable, we let Fr be the collection of global right
strong f -generics.
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Ideal groups in S inv
x (G,G )

So what about that case of S inv
x (G,G)?

Theorem (G.-Rzepecki 2025+)

Suppose that G is NIP and definably amenable. Then

1 S inv
x (G,G) contains a unique minimal left ideal, Fr . These are precisely

the right strong f -generics.

2 If u ∈ Fr is an idempotent, then u ∗ S inv
x (G,G) is an ideal group.

3 (HPP) The right stabilizer of any strong right f -generic is G/G00.

4 For any idempotent u ∈ Fr , π|u∗S inv
x (G,G) : u ∗ S inv

x (G,G)→ G/G00 is an
algebraic isomorphism.

As consequence, we have that the ideal group of S inv
x (G,G) and S fs

x (G,G) are
always isomorphic. Furthermore, essentially the same map gives an
isomorphism.

Ok – So, is there some kind of natural isomorphism? (Reconsider Z)
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Retraction

If the underlying theory is NIP, there exists a mysterious map

F : S inv
x (G,G)→ S fs

x (G,G)

whose definition is a little bit delicate.

Fact (Simon)

The retraction map F from S inv
x (G,G) to S fs

x (G,G) has the following properties:
Let p, q ∈ S inv

x (G,G), then

1 F (p)|G = p|G ,

2 F is continuous,

3 If p is finitely satisfiable in M, then F (p) = p,

4 For any M-definable function f , f∗(F (p)) = F (f∗(p)).

5 If q is finitely satisfiable in M, then F (qx ⊗ py ) = qx ⊗ F (py ).

Question: Does the retraction map induce an isomorphism between Ellis
subgroups?
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It’s complicated

Sometimes? It’s a little complicated...
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Abelian groups

It is essentially true for abelian NIP groups.

Lemma

Suppose that G is NIP and definably amenable. Let I be a minimal left ideal
contained in F (Fr ). Fix an idempotent u ∈ I . Consider t ∈ Fr such that
F (t) = u. Suppose that every coset of G00 has a representative in G. Then the
following are equivalent:

1 For every g ∈ G(M), u · g ∈ u ∗ I .
2 FM |t∗S inv

G
(U,M) : t ∗ S inv

G (U ,M)→ u ∗ I is an isomorphism of Ellis subgroups.

Theorem

Suppose G is NIP, abelian, and G contains representatives for each coset of
G00. Let I be a minimal left ideal of F (Fr ). Fix an idempotent u ∈ I . Consider
t ∈ Fr such that FM(t) = u. Then the map
FM |t∗S inv

G
(U,M) : t ∗ S inv

G (U ,M)→ u ∗ I is an isomorphism of Ellis subgroups.
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Example

The retraction map is not an isomorphism of Ellis groups in R o {±1}.

Elements of R o {±1} are elements of the cartesian product R× {±1} with
the following group law:

(a, i) · (b, j) =

{
(a + b, j) if i = 1,
(a− b,−j) if i = −1.
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Ro {±1}
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Upside down and backwards

Consider the model theoretic inversion, −1 : Sx(G)→ Sx(G) defined via
p−1 = tp(a−1/G).

We remark that the inversion map sends invariant types to invariant type,
finitely satisfiable types to finitely satisfiable types.

Definition

We say that a definably amenable G is dfg if there exists some p ∈ S inv
x (G,G)

such that p is definable over G and every global translate of p is also definable
over G .

Intuition: dfg groups are the opposite of compact.

Theorem (G.-Rzepecki 2025+)

Suppose that T is NIP, G is dfg, and t is a right dfg type over M. Then
F ◦−1 |t∗S inv

G
(U,M) is an anti-isomorphism from an invariant Ellis subgroup to a

finitely satisfiable Ellis subgroup. Precomposing with group inversion give an
honest-to-goodness isomrophism.

20 / 21
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Thank you

Thank you!
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