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Randomness

Definition

A set A ⊆ 2<ω is prefix-free if it is an antichain with respect to the natural partial
order on 2<ω.

Definition
A prefix-free machine is a Turing machine whose domain is prefix-free.

Definition
The Kolmogorov complexity of a string σ with respect to a Turing machine M is

KM(σ) = min({|τ | : M(τ) = σ}).
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Randomness

Definition
A prefix-free machine U is optimal if for any prefix-free machine M there is a
constant c such that for any string σ

KU(σ) ≤ KM(σ) + c .

We fix a optimal prefix-free machine U and if there is no ambiguity, the
Kolmogorov complexity K (σ) of a string σ denotes KU(σ).

Definition(Chaitin)[chaitin˙1975]

A real x ∈ 2ω is 1− random if there is a constant c such that

∀nK (A ↾ n) ≥ n + c .
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Chaitin’s Ω

Definition(Chaitin)

For an optimal prefix-free machine U, we define the Chaitin’s Ω relative to U as

ΩU =
∑
U(σ)↓

2−|σ|.

L., Zhang, Zhang, Zhao A variant of continuous Chaitin’s Ω function September 5, 2025 6 / 28



Chaitin’s Ω as a function

Downey[downey2005relativizing]

Define ΩU from 2ω to 2ω as

ΩU(x) =
∑

Ux (σ)↓

2−|σ|.

Becher and Grigorieff[Becher˙05]

Define ΩU from P(N) to 2ω as

ΩU(O) =
∑

σ∈U−1(O)↓

2−|σ|.
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Chaitin’s Ω as a function

Hölzl, Merkle, Miller, Stephan and Yu
[hlzl˙merkle˙miller˙stephan˙yu˙2020]

Define Ω̂U from 2ω to 2ω as

Ω̂U(x) =
∑
σ≺x

2−KU (σ).

Zhang[Zhang]

Define fU from 2ω to 2ω as

fU(x) =
∑
σ≤Lx

2−KU (σ).
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The differentiability of f

Definition

A real x ∈ 2ω is density random if x is 1-random and has density 1 in every Π0
1

class containing x .

Theorem (Miyabe, Nies and Zhang [miyabe˙nies˙zhang˙2016])

x is density random if and only if g ′(x) exists for all interval-c.e. function g.

Lemma[hlzl˙merkle˙miller˙stephan˙yu˙2020]

If x is 1-random, then

lim
n→∞

2n
∑
m≥0

2−K((x↾n)0m) = 0.
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The differentiability of F

Theorem

Define F : [0, 1] → [0, 1] as F (x) = f (B(x)) where B(x) is the infinite binary
expression with infinitely many 0. A real x is density random if and only if f is
differentiable at x . In this case F ′(x) = 0.

Proof Sketch
⇒: By theorem above.
⇐: Similar to [hlzl˙merkle˙miller˙stephan˙yu˙2020].

If x is not 1-random, then F is not differentiable at x .

Suppose that F is differentiable at x , then F ′(x) = 0.

If x is not density random, then F is not differentiable at x .
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The image of f

Proposition

f (2ω) is null, nowhere dense and perfect Π0
1 relative to ∅′ class.

Figure: The image of f

f0

f1

f2

f3

corollary

For any x , f (x) is not weakly 1-random relative to ∅′.
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Hausdorff Dimension

Definition (Hausdorff Measure)

For A ⊆ 2ω, the s-dimensional outer Hausdorff measure is:

Hs
n(A) = inf

{∑
σ∈D

µs([σ]) : D ⊆ 2≥n, A ⊆ [D]

}

Hs(A) = lim
n→∞

Hs
n(A)

where µs([σ]) = 2−s|σ|.
The Hausdorff dimension of A is:

dimH(A) = inf{s : Hs(A) = 0}
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Generalized Cantor Sets

Definition

A generalized cantor sets with scale γ is 2ω with middle 1
γ of each interval

removed iteratively:

Cγ
0 = [0, 1]

Cγ
n =

γ − 1

2γ
Cγ
n−1 ∪

(
γ + 1

2γ
+

γ − 1

2γ
Cγ
n−1

)
Cγ =

⋂
n

Cγ
n

Fact

dimH(C
γ) = − log 2

log
(

γ−1
2γ

) ,
and as γ → ∞, dimH(C

γ) → 1.
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dimH(f [2
ω]) = 1

Theorem

The image set f [2ω] = {f (x) : x ∈ 2ω} has Hausdorff dimension 1.

Proof Sketch
1 Construct maps satisfying Lipschitz condition gn : [0, 1] → [0, 1] with uniform

constant c ,

2 Define limit function g(x) = limn→∞ gn(x) which also satisfies Lipschitz
condition,

3 Apply Mapping Theorem:

|g(x)− g(y)| ≤ c |x − y | =⇒ Hs(g(A)) ≤ csHs(A)
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Algorithmic properties

Proposition: Turing Computability Relations

Given a real x . (i) x ′ ≥T ∅′ ⊕ x ≥T f (x); (ii) f (x)′ ≥T ∅′ ⊕ f (x) ≥T x ; (iii)
f (x)⊕ x ≥T ∅′.

Proof.

(i) Given f (x), ∅′ can decide wether σ ≤L x .
(ii) Similar to (i).
(iii) For almost all n, if f (x)− fs(x) < 2−8

n

at stage s > 4n, then n ∈ ∅′ if and
only if n ∈ ∅′s+1.
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Algorithmic properties

Definition(Miller)[miller2006contrasting]

A real x is weakly low for K if

∃∞n(K (n) ≤ K x(n) + O(1))

Definition(Hölzl, et al)[hlzl˙kraling˙merkle˙2009]

A function f : N → N is a Solovay function relative to A, if f is right c.e. relative
to A, KA(n) ≤ f (n) + c for some constant c , and for some d , f (n) ≤ KA(n) + d
for infinitely many n.

Theorem(Hölzl, et al)[hlzl˙kraling˙merkle˙2009]

A right-c.e. function f is a Solovay function relative to X if and only if
∑
n
2−f (n) is

ML-random relative to X.
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Algorithmic properties

Theorem

A real x ̸= 0 is weakly low for K , if and only if f (x) is x − random.

proof sketch

Let s be the least number such that 0s1 ≤L x . Define g from ω to ω as:

g(n) =

{
n, n <L 0s1

e(n), n ≥L 0s1

where e(n) is a computable permutation from {n : n ≥L 0s1} to
{n : n ≥L 0s1 ∧ n <L x}.
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Algorithmic properties

Corollary

For all weakly low for K but not K-trivial x :

f (x) ̸≥T ∅′
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f is not Turing − invariant

Theorem(with Slaman)

There are x , y such that x ≡T y and f (x) ̸≡T f (y).

Proof Sketch

Suppose for all x ≡T y we have f (x) ≡T f (y). Note that for all x , x is
right − c .e. to f (x), So x̄ is right − c .e. to ¯f (x). Hence for all x , f (x) ≥T x
which is a contradiction.
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Image of f

Theorem 2(with Yu)

There are uncountbly many x such that f (x) is not random. Moreover
{x : f (x) is not 1− random} is null.

Small perturbation lemma

For all real x and n ∈ ω, if there exists j such that |f (x△j)− f (x)| > 2−n, then
there is y ∈ 2ω such that 2−n−c ⩽ |f (y)− f (x)| ⩽ 2−n.

L., Zhang, Zhang, Zhao A variant of continuous Chaitin’s Ω function September 5, 2025 22 / 28



Image of f

Theorem 2(with Yu)

There are uncountbly many x such that f (x) is not random. Moreover
{x : f (x) is not 1− random} is null.

Small perturbation lemma

For all real x and n ∈ ω, if there exists j such that |f (x△j)− f (x)| > 2−n, then
there is y ∈ 2ω such that 2−n−c ⩽ |f (y)− f (x)| ⩽ 2−n.

L., Zhang, Zhang, Zhao A variant of continuous Chaitin’s Ω function September 5, 2025 22 / 28



Small perturbation lemma

Small perturbation lemma

For all real x and n ∈ ω, if there exists j such that |f (x△j)− f (x)| > 2−n, then
there is y ∈ 2ω such that 2−n−c ⩽ |f (y)− f (x)| ⩽ 2−n.

Figure: the intuition of some case of small perturbation lemma

s
s + 1

x ↾ s

x→sx←s+1x
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Proof of Theorem 2

Figure: the intuition of theorem 2

g(n) g(n) + c g(n + 1)

|f (x∆n − f (x))| |f (x∆n+1 − f (x))|

Proof.

Define g(0) = 0 and g(n + 1) = g(n) + n + c .
We use small perturbation lemma to make sure that if
f (x) ↾ [g(n − 1) + c , g(n)] ̸= 1n+1 and f (x) ↾ [g(n − 1) + c , g(n)) ̸= 0n then
f (x) ↾ [g(n), g(n) + c) ̸= 0c .
Since all 2− random real is weakly low for K and

{x : f (x) is not 1− random} ⊊ {x : x is not 2− random}.
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Questions

Question 1

If x is not K -trivial, can f be Turing invariant on deg(x)?

Question 2

Is there a computable real in f (2ω)? Given a computable real (or just a rational)
p, is there is an optimal prefix-free machine V such that p ∈ fV (2

ω)?
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Questions

Proposition(with Slaman)

If f (x) is right-c.e., then x must be non-1-random and right-c.e.. Moreover, if
f (x) is computable, then x is also Turing complete.

Proof.

Given right-c.e. q with approximation (qs)s∈ω, we construct some opponent
machine Mq with coding constant cM , that is, ∀σK (σ) ≤ KM(σ) + cM , and use M
to attack the optimality of U to make sure ∀xf (x) ̸= q. By recursion theorem, cM
can be used in the construction of M. First, define Jσ = (f (σ0∞), f (σ1∞)) and
Jσ,s = (fs(σ0

∞), fs(σ1
∞)). Whenever qs in some small interval Jσ,s , M gives a

short description of some string τ on the left of σ to force U give a short
description of τ later, which implies f (σ0∞)− fs(σ0

∞) is big enough to make
sure q ̸∈ Jσ.
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